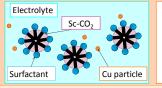

Novel Cu electroplating

P&I

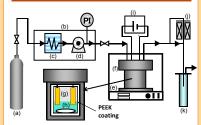
in copper-sulfate-based electrolyte with Cu particles

Nao Shinoda, Tetsuya Shimizu, Tso-Fu Mark Chang, Akinobu Shibata and Masato Sone Precision and Intelligence Laboratory, Tokyo Institute of Technology, Japan


Introduction

Enhance transport of reactants to confined geometries

Low viscosity & zero surface tension


Sc-CO₂ suspension

- •Sc-CO₂ is non-polar
- →Make the emulsion
- •Desorption of H2 from cathode
- →Void- and pinhole-free
- ·Cu particles in the emulsion
- →Make the suspension

Experimental Procedures

High pressure apparatus

(a)CO2 gas tank, (b)CO2 liquidization unit. (c)liquidization unit, (d)high pressure pump (e)thermal bath, (f)reaction cell (SUS316L) with PEEK coating inside, (g)substrate, (h)cross stirrer, (i)power supply, (j)back pressure regulator, (k)trap

Materials

Substrate >Cathode: Cu substrate or

hole test element group (TEG)

(TiN barrier layer and Cu seed layer spattered on Si substrate)

Electrolyte

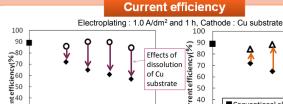
- >CuSO₄·5H₂O (0.85 mol/L) >H₂SO₄ (0.55 mol/L)
- >Additive: Top Lucina α-M, α-1, α-2, Cl
- >Average size of Cu pariticles: 63 μm

- Surfactant ≻Polyoxyethylene lauryl ether
- (C₁₂H₂₅(OCH₂CH₂)₁₅OH) 1.0 vol% with respect to volume of electrolyte

Condition

- Pressure: 15 MPa
- Temperature: 323 K Current density: 1.0 A/dm²

Pretreatments

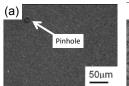

Degreasing solution (Ace clean, Okuno) for 1 min > 10 wt% H₂SO₄ for 10 sec

Electroplating using sc-CO₂ suspension (EP-SCS) method

Results and Discussion

■ Conventional electrolyte OHexane emulsion 10 ◆Sc-CO₂ emulsion(EP-SCE)

0 10 20 30 40 50 Volume fraction of CO₂ (%) • Current efficiency of sc-CO₂ emulsion (EP-SCE) was lower than hexane emulsion →Cu substrate dissolved in sc-CO₂ emulsion


70 dissolution of 60 Cu substrate 50 40 30 ■ Conventional electrolyte Sc-CO₂ emulsion(FP-SCF) 20 △Sc-CO2 suspension (EP-SCS) 10 with Cu particles 1.7 g/L 0

than sc-CO2 emulsion

→Cu particles inhibited dissolution of Cu substrate

Morphology of Cu films

Electroplating: 1.0 A/dm2 and 1 h, Cathode: Cu substrate

(a)Conventional electroplating ·Cu film by conventional

method was smooth, but

50µm

(b) EP-SCE

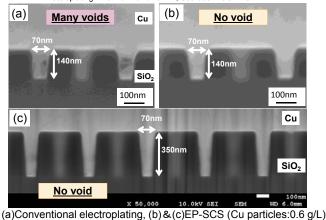
(c) 50μm (c)EP-SCS

·Cu film by EP-SCE was rough

(Cu particles:0.3 g/L) ·Cu film by FP-SCS was smooth

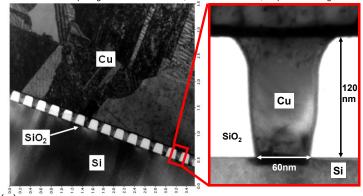
and with no pinhole

Cu particles dissolved in the electrolyte


Filling of Cu into nanoscale holes

Effects of

nhibition in


SEM image

Electroplating: 1.0 A/dm2 and 10 min, Cathode: hole TEG (b) Cu

TEM image

Electroplating: 1.0 A/dm² and 10 min, Cathode: hole TEG, Cu particles: 0.6 g/L

Bottom-up filling and single crystal Cu by EP-SCS were confirmed

Conclusions

- · We proposed a novel Cu electroplating method using sc-CO₂ suspension (EP-SCS) for filling of nanoscale holes.
- · Current efficiency was increased by addition of Cu particles to inhibit dissolution of Cu substrate in EP-SCS.
- The Cu film by EP-SCS was smooth, because Cu particles dissolved in the electrolyte.
- Nanoscale holes with 70 nm in diameter and aspect ratios of 2 and 5 could be filled by electrodeposited Cu with no void.
- · Bottom-up filled Cu was found to be single crystal in all holes with 60 nm in diameter and aspect ratio of 2.

Acknowledgement

Funding Program for Next Generation World-leading Researchers (NEXT Program) GN037, Cabinet Office (CAO), Japan